

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 of 2

Module-3

- Describe the resource allocation graph i) With deadlock ii) With a cycle but no deadlock 5 a. (06 Marks)
 - Using Bankers algorithm determine whether the following system is in a safe state. b.

	0 1									
Process	Allocation			Max			Available			
	Α	В	С	Α	В	С	Α	В	С	
P ₀	0	0	2	0	0	4	1	0	2	
P ₁	1	0	0	2	0	1				
P ₂	1	3	5	1	3	7			C	
P ₃	6	3	2	8	4	2				
P ₄	1	4	3	1	5	7		, '		

If a request from process P_2 arrives for (0, 0, 2) can the request be granted immediately?

(07 Marks) Illustrate with example the internal and external fragmentation problem. (06 Marks) c.

OR

- What are Translation Loadaside Buffer (TLB)? Explain TLB in detail with a simple paging 6 a. system with a neat diagram. (07 Marks)
 - What is deadlock? What are necessary conditions for deadlock? b. (07 Marks)
 - With the help of a neat diagram, explain the various steps of address binding. (06 Marks) C.

Module-4

- Consider the following page reference string 7 a. 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 Assuming there are 3 memory frames, how many page faults would occur in case of i) LRU ii) Optimal algorithm note that initially all frames are empty. (07 Marks) (07 Marks)
 - Explain the various operations performed on files. b.
 - With suitable example, explain any two methods of implementation of free space list. C.

(06 Marks)

(06 Marks)

8	a.	Illustrate how demand paging affects system perform	nance. (07 Marks)
	b.	Explain the various access methods of files.	(07 Marks)
	c.	What is thrashing? How it can be controlled?	(06Marks)

Module-5

a. Describe the different Linux Kernel modules. 9 (07 Marks) Explain different IPC mechanisms available in Linux. (07 Marks) b. c. Explain process scheduling in a Linux system. (06 Marks)

OR

- With a neat diagram, explain in detail the component of a Linux operating system. (07 Marks) 10 a.
 - Explain the various disk scheduling algorithm with example. b. (07 Marks)
 - Explain the file system implementation in Linux. C.

2 of 2